Perspective-n-Point-and-Line (P$n$PL) algorithms aim at fast, accurate, and robust camera localization with respect to a 3D model from 2D-3D feature correspondences, being a major part of modern robotic and AR/VR systems. Current point-based pose estimation methods use only 2D feature detection uncertainties, and the line-based methods do not take uncertainties into account. In our setup, both 3D coordinates and 2D projections of the features are considered uncertain. We propose PnP(L) solvers based on EPnP and DLS for the uncertainty-aware pose estimation. We also modify motion-only bundle adjustment to take 3D uncertainties into account. We perform exhaustive synthetic and real experiments on two different visual odometry datasets. The new PnP(L) methods outperform the state-of-the-art on real data in isolation, showing an increase in mean translation accuracy by 18% on a representative subset of KITTI, while the new uncertain refinement improves pose accuracy for most of the solvers, e.g. decreasing mean translation error for the EPnP by 16% compared to the standard refinement on the same dataset. The code is available at https://alexandervakhitov.github.io/uncertain-pnp/.
翻译:视觉-点和线性(P$n美元PL)算法旨在对2D-3D特征通信的3D模型进行快速、准确和稳健的摄像定位,这是现代机器人和AR/VR系统的主要部分。目前基于点的估算方法只使用2D特征检测不确定性,而基于线的方法没有考虑到不确定性。在我们的设计中,3D坐标和对特征的2D预测都被认为是不确定的。我们建议基于 EPnP 和 DLS的PnP(L) 解答器,用于不确定性-觉醒的构成估计。我们还修改仅使用运动的捆绑式调整,以考虑到3D不确定性。我们对两种不同的视觉odorograph 数据集进行详尽的合成和真实实验。新的 PnP(L) 方法超越了实际数据中的状态,显示KITTI有代表性的子集中平均翻译准确度提高了18%,而新的不确定性改进则给大多数解决方案的准确性,例如:正在减少EP-pnParring iming 错误,用于EPakh/anderb 16 数据比ARC.