As it is known, universal codes, which estimate the entropy rate consistently, exist for stationary ergodic sources over finite alphabets but not over countably infinite ones. We generalize universal coding as the problem of universal densities with respect to a fixed reference measure on a countably generated measurable space. We show that universal densities, which estimate the differential entropy rate consistently, exist for finite reference measures. Thus finite alphabets are not necessary in some sense. To exhibit a universal density, we adapt the non-parametric differential (NPD) entropy rate estimator by Feutrill and Roughan. Our modification is analogous to Ryabko's modification of prediction by partial matching (PPM) by Cleary and Witten. Whereas Ryabko considered a mixture over Markov orders, we consider a mixture over quantization levels. Moreover, we demonstrate that any universal density induces a strongly consistent Ces\`aro mean estimator of conditional density given an infinite past. This yields a universal predictor with the $0-1$ loss for a countable alphabet. Finally, we specialize universal densities to processes over natural numbers and on the real line. We derive sufficient conditions for consistent estimation of the entropy rate with respect to infinite reference measures in these domains.
翻译:众所周知,对于固定的雌性激素源而言,对恒定字母的定数率进行持续估计的通用编码,对恒定雌性值进行持续估计,对固定的成份率进行统一估计,但不会超过可计量的无限值。我们把通用编码作为在可计量生成的可计量空间进行固定参照度测量时的普遍密度问题加以概括。我们发现,对精确度差异值进行一致估计的普遍密度,对有限参照度水平进行一致估计,因此在某种意义上没有必要使用有限字母。为了显示普遍密度,我们用Feutrill和Ruban来调整非参数的定数率(NPD)估计值。我们所作的修改类似于Ryabko通过Clearry和Witnit的部分匹配(PM)对预测所作的修改。而Ryabko则把一种混合物比Markov订购量高,我们认为一种混合物比分值高。此外,我们证明,任何普遍密度都会诱导出一种非常一致的Cesçaro对有条件密度的平均值进行精确度估计。这产生一种通用的预测,以0.1美元计算线损失,用于可计数的字母。最后,我们将使这些精确度的精确度对自然序列进行精确度进行充分的估计。</s>