This paper gives a simple theory of inference to logically reason symbolic knowledge fully from data over time. We take a Bayesian approach to model how data causes symbolic knowledge. Probabilistic reasoning with symbolic knowledge is modelled as a process of going the causality forwards and backwards. The forward and backward processes correspond to an interpretation and inverse interpretation of formal logic, respectively. The theory is applied to a localisation problem to show a robot with broken or noisy sensors can efficiently solve the problem in a fully data-driven fashion.
翻译:本文用一个简单的推理理论来推断逻辑理性的象征性知识,它完全来自一段时间的数据。我们用贝叶斯学的方法来模拟数据是如何导致象征性知识的。符号性知识的概率推理模拟了将因果关系推向前向和后向的过程。前向和后向过程分别对应对正式逻辑的解释和反向解释。该理论应用到一个本地化问题,以显示一个带有破碎或噪音传感器的机器人能够以完全由数据驱动的方式有效地解决问题。</s>