The landscape of optimization problems has become increasingly complex, necessitating the development of advanced optimization techniques. Meta-Black-Box Optimization (MetaBBO), which involves refining the optimization algorithms themselves via meta-learning, has emerged as a promising approach. Recognizing the limitations in existing platforms, we presents PlatMetaX, a novel MATLAB platform for MetaBBO with reinforcement learning. PlatMetaX integrates the strengths of MetaBox and PlatEMO, offering a comprehensive framework for developing, evaluating, and comparing optimization algorithms. The platform is designed to handle a wide range of optimization problems, from single-objective to multi-objective, and is equipped with a rich set of baseline algorithms and evaluation metrics. We demonstrate the utility of PlatMetaX through extensive experiments and provide insights into its design and implementation. PlatMetaX is available at: \href{https://github.com/Yxxx616/PlatMetaX}{https://github.com/Yxxx616/PlatMetaX}.
翻译:暂无翻译