We develop an active inference route-planning method for the autonomous control of intelligent agents. The aim is to reconnoiter a geographical area to maintain a common operational picture. To achieve this, we construct an evidence map that reflects our current understanding of the situation, incorporating both positive and "negative" sensor observations of possible target objects collected over time, and diffusing the evidence across the map as time progresses. The generative model of active inference uses Dempster-Shafer theory and a Gaussian sensor model, which provides input to the agent. The generative process employs a Bayesian approach to update a posterior probability distribution. We calculate the variational free energy for all positions within the area by assessing the divergence between a pignistic probability distribution of the evidence map and a posterior probability distribution of a target object based on the observations, including the level of surprise associated with receiving new observations. Using the free energy, we direct the agents' movements in a simulation by taking an incremental step toward a position that minimizes the free energy. This approach addresses the challenge of exploration and exploitation, allowing agents to balance searching extensive areas of the geographical map while tracking identified target objects.
翻译:本文提出了一种用于智能体自主控制的主动推理路径规划方法。该方法旨在通过侦察地理区域以维持统一的作战态势图。为实现这一目标,我们构建了一个反映当前态势认知的证据地图,该地图整合了随时间收集的关于潜在目标物体的正向与"负向"传感器观测数据,并随时间推移将证据扩散至整个地图区域。主动推理的生成模型采用Dempster-Shafer理论与高斯传感器模型,为智能体提供输入信息。生成过程则采用贝叶斯方法更新后验概率分布。我们通过评估证据地图的决策概率分布与基于观测数据(包括接收新观测数据时的意外程度)得出的目标物体后验概率分布之间的散度,计算区域内所有位置的变分自由能。利用自由能计算结果,在仿真中引导智能体向最小化自由能的位置采取渐进式移动。该方法有效解决了探索与利用的平衡难题,使智能体能够在追踪已识别目标物体的同时,对地理地图的广阔区域进行系统性搜索。