Adversarial examples pose a security risk as they can alter decisions of a machine learning classifier through slight input perturbations. Certified robustness has been proposed as a mitigation where given an input $\mathbf{x}$, a classifier returns a prediction and a certified radius $R$ with a provable guarantee that any perturbation to $\mathbf{x}$ with $R$-bounded norm will not alter the classifier's prediction. In this work, we show that these guarantees can be invalidated due to limitations of floating-point representation that cause rounding errors. We design a rounding search method that can efficiently exploit this vulnerability to find adversarial examples against state-of-the-art certifications in two threat models, that differ in how the norm of the perturbation is computed. We show that the attack can be carried out against linear classifiers that have exact certifiable guarantees and against neural networks that have conservative certifications. In the weak threat model, our experiments demonstrate attack success rates over 50% on random linear classifiers, up to 23% on the MNIST dataset for linear SVM, and up to 15% for a neural network. In the strong threat model, the success rates are lower but positive. The floating-point errors exploited by our attacks can range from small to large (e.g., $10^{-13}$ to $10^{3}$) - showing that even negligible errors can be systematically exploited to invalidate guarantees provided by certified robustness. Finally, we propose a formal mitigation approach based on rounded interval arithmetic, encouraging future implementations of robustness certificates to account for limitations of modern computing architecture to provide sound certifiable guarantees.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员