Real-time forecasting of travel demand during wildfire evacuations is crucial for emergency managers and transportation planners to make timely and better-informed decisions. However, few studies focus on accurate travel demand forecasting in large-scale emergency evacuations. Therefore, this study develops and tests a new methodological framework for modeling trip generation in wildfire evacuations by using (a) large-scale GPS data generated by mobile devices and (b) state-of-the-art AI technologies. The proposed methodology aims at forecasting evacuation trips and other types of trips. Based on the travel demand inferred from the GPS data, we develop a new deep learning model, i.e., Situational-Aware Multi-Graph Convolutional Recurrent Network (SA-MGCRN), along with a model updating scheme to achieve real-time forecasting of travel demand during wildfire evacuations. The proposed methodological framework is tested in this study for a real-world case study: the 2019 Kincade Fire in Sonoma County, CA. The results show that SA-MGCRN significantly outperforms all the selected state-of-the-art benchmarks in terms of prediction performance. Our finding suggests that the most important model components of SA-MGCRN are evacuation order/warning information, proximity to fire, and population change, which are consistent with behavioral theories and empirical findings.
翻译:实时预测森林火灾疏散中的出行需求对于应急管理人员和交通规划者做出及时和更明智的决策非常重要。然而,很少有研究专注于大规模紧急疏散中准确预测出行需求。因此,本研究利用(a)大规模移动设备生成的 GPS 数据和 (b)最先进的人工智能技术,开发和测试一种新的建模框架,用于在森林火灾疏散中建模出行需求。所提出的方法旨在预测疏散旅行和其他类型的旅行。基于由 GPS 数据推断出的出行需求,我们开发了一种新的深度学习模型, 即SA-MGCRN, 以及一个模型更新方案,以在森林火灾疏散期间实现实时预测出行需求。本研究在真实案例研究中测试了提出的方法框架:2019年加利福尼亚州索诺玛县肯凯德火灾。结果表明,SA-MGCRN在预测性能方面明显优于所有选定的最先进基准。我们的研究发现适应情境的多图卷积循环神经网络(SA-MGCRN)的最重要的模型组成部分是疏散命令/警告信息、距离火源的距离和人口变化,这与行为理论和实证研究结果一致。