Multi-objective high-dimensional motion optimization problems are ubiquitous in robotics and highly benefit from informative gradients. To this end, we require all cost functions to be differentiable. We propose learning task-space, data-driven cost functions as diffusion models. Diffusion models represent expressive multimodal distributions and exhibit proper gradients over the entire space. We exploit these properties for motion optimization by integrating the learned cost functions with other potentially learned or hand-tuned costs in a single objective function and optimize all of them jointly by gradient descent. We showcase the benefits of joint optimization in a set of complex grasp and motion planning problems and compare against hierarchical approaches that decouple grasp selection from motion optimization.
翻译:多目标高维运动优化问题在机器人中普遍存在,而且从信息梯度中获益良多。为此目的,我们要求所有成本功能是不同的。我们建议学习任务空间、数据驱动的成本功能作为传播模型。传播模型代表了表达式多式联运分布,在整个空间展示了适当的梯度。我们利用这些特性来优化运动,将学到的成本功能与其他可能学到的成本或手控成本整合到一个单一的客观功能中,并通过梯度下降将所有成本优化到一起。我们展示了在一系列复杂的掌握和移动规划问题上联合优化的好处,并与从运动优化中获取选择的分级方法进行比较。