A good estimation of the actions' cost is key in task planning for human-robot collaboration. The duration of an action depends on agents' capabilities and the correlation between actions performed simultaneously by the human and the robot. This paper proposes an approach to learning actions' costs and coupling between actions executed concurrently by humans and robots. We leverage the information from past executions to learn the average duration of each action and a synergy coefficient representing the effect of an action performed by the human on the duration of the action performed by the robot (and vice versa). We implement the proposed method in a simulated scenario where both agents can access the same area simultaneously. Safety measures require the robot to slow down when the human is close, denoting a bad synergy of tasks operating in the same area. We show that our approach can learn such bad couplings so that a task planner can leverage this information to find better plans.
翻译:正确估计行动的成本是人类机器人合作任务规划的关键。 行动的持续时间取决于代理人的能力以及人类和机器人同时实施的行动之间的相互关系。 本文提出一种方法来学习行动的成本以及人类和机器人同时实施的行动之间的结合。 我们利用以往执行中的信息来了解每次行动的平均持续时间以及代表人类行动对机器人行动持续时间的影响的协同作用系数。 我们在模拟情景中执行拟议方法,使两个代理人都能同时进入同一区域。 安全措施要求机器人在接近人类时放慢速度, 指出在同一领域运行的任务之间有不好的协同作用。 我们显示,我们的方法可以学到如此糟糕的组合, 以便任务规划者能够利用这一信息找到更好的计划。