We develop nonparametric Bayesian modelling approaches for Poisson processes, using weighted combinations of structured beta densities to represent the point process intensity function. For a regular spatial domain, such as the unit square, the model construction implies a Bernstein-Dirichlet prior for the Poisson process density, which supports general inference for point process functionals. The key contribution of the methodology is two classes of flexible and computationally efficient models for spatial Poisson process intensities over irregular domains. We address the choice or estimation of the number of beta basis densities, and develop methods for prior specification and posterior simulation for full inference about functionals of the point process. The methodology is illustrated with both synthetic and real data sets.
翻译:我们为Poisson进程开发了非参数性贝叶斯建模方法,使用结构化贝贝密度的加权组合来代表点进程强度功能。对于一个正常的空间域,如单位方形,模型构造意味着在Poisson进程密度之前使用伯恩斯坦-迪里赫莱特,支持点进程功能的一般推论。该方法的主要贡献是两种灵活和计算高效的模型,用于空间 Poisson进程在非常规领域的强度。我们处理贝贝基密度数量的选择或估计,并开发事先规格和后方模拟方法,以充分推断点进程功能。该方法用合成和真实数据集加以说明。