Granger causality has been employed to investigate causality relations between components of stationary multiple time series. We generalize this concept by developing statistical inference for local Granger causality for multivariate locally stationary processes. Our proposed local Granger causality approach captures time-evolving causality relationships in nonstationary processes. The proposed local Granger causality is well represented in the frequency domain and estimated based on the parametric time-varying spectral density matrix using the local Whittle likelihood. Under regularity conditions, we demonstrate that the estimators converge to multivariate normal in distribution. Additionally, the test statistic for the local Granger causality is shown to be asymptotically distributed as a quadratic form of a multivariate normal distribution. The finite sample performance is confirmed with several simulation studies for multivariate time-varying autoregressive models. For practical demonstration, the proposed local Granger causality method uncovered new functional connectivity relationships between channels in brain signals. Moreover, the method was able to identify structural changes in financial data.
翻译:使用重力因果关系来调查固定多时间序列各组成部分之间的因果关系。 我们通过为多变本地固定过程开发本地引力因果关系的统计推论来推广这个概念。 我们提议的本地引力因果关系方法捕捉非静止过程的时间变化因果关系。 拟议的本地引力因果关系在频率域中得到了很好的体现, 并且根据使用本地Whittle可能性的参数时间变化光谱密度矩阵进行了估算。 在正常条件下, 我们证明估计值与分布中的多变正常相融合。 此外, 显示本地引力因果关系的测试统计作为多变正常分布的二次形式以静态形式分布。 有限的样本性能得到了多个多变时间变化的自动反向模型模拟研究的确认。 为了实际证明, 拟议的本地引力因果关系方法发现了脑信号各频道之间新的功能连接关系。 此外, 这种方法能够识别财务数据的结构变化。