For multivariate spatial Gaussian process (GP) models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence among the variables. This is undesirable, especially for highly multivariate settings, where popular cross-covariance functions such as the multivariate Mat\'ern suffer from a ``curse of dimensionality'' as the number of parameters and floating point operations scale up in quadratic and cubic order, respectively, in the number of variables. We propose a class of multivariate ``Graphical Gaussian Processes'' using a general construction called ``stitching'' that crafts cross-covariance functions from graphs and ensures process-level conditional independence among variables. For the Mat\'ern family of functions, stitching yields a multivariate GP whose univariate components are Mat\'ern GPs, and conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Mat\'ern GP to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling.
翻译:对于多变空间高斯进程( GP) 模型来说, 交叉变量函数的习惯性规格并不利用关系间可变图形来确保变量之间的进程性有条件独立。 这不可取, 特别是对于高度多变性环境, 特别是对于高多变性环境, 多变性 Mat\'ern 等流行的交叉变量性功能受到“ 维度的诅咒” 的影响, 因为它的参数和浮点操作在量子序列中, 在量子和立方顺序中, 不同变量数量, 不同变量的参数和浮点操作规模。 我们建议了一种多变性“ 格高调进程” 类别, 使用一个叫做“ 斜度” 的通用构造, 由图表中的工艺性跨变异功能确保变量之间的进程性有条件独立。 对于 Mat\' ern 函数组, 缝合一个多变式GP, 其单变式组件是 Mat\'ern GP, 符合图形模型中指定的进程级条件性独立性。 对于高度多变式设置和可变化的图形模型模型模型模型, 缝合提供高额化的模型化数据化模型和矩阵化模型化模型。