In this paper, we propose novel, fully Bayesian non-parametric tests for one-sample and two-sample multivariate location problems. We model the underlying distribution using a Dirichlet process prior, and develop a testing procedure based on the posterior credible region for the spatial median functional of the distribution. For the one-sample problem, we fail to reject the null hypothesis if the credible set contains the null value. For the two-sample problem, we form a credible set for the difference of the spatial medians of the two samples and we fail to reject the null hypothesis of equality if the credible set contains zero. We derive the local asymptotic power of the tests under shrinking alternatives, and also present a simulation study to compare the finite-sample performance of our testing procedures with existing parametric and non-parametric tests.
翻译:在本文中,我们建议对一模版和二模版多变位置问题进行全巴伊西亚非参数性的新测试。我们用前一个Drichlet进程模拟基本分布,并根据后方可靠的区域,为分布的空间中位功能开发一个测试程序。对于一模版问题,如果可信的数据集含有无效值,我们就不能拒绝无效假设。对于两样问题,我们为两个样本的空间中位数的差异形成了一个可信的套套数,如果可靠的数据集为零,我们不拒绝平等这一空假设。我们从缩缩缩缩的替代品中获取当地测试的无药力,并且还提出模拟研究,将我们测试程序的有限抽样性能与现有的参数和非参数性测试进行比较。