Recently, large language models have facilitated the emergence of highly intelligent conversational AI capable of engaging in human-like dialogues. However, a notable distinction lies in the fact that these AI models predominantly generate responses rapidly, often producing extensive content without emulating the thoughtful process characteristic of human cognition and typing. This paper presents a design aimed at simulating human-like typing behaviors, including patterns such as hesitation and self-editing, as well as a preliminary user experiment to understand whether and to what extent the agent with human-like typing behaviors could potentially affect conversational engagement and its trustworthiness. We've constructed an interactive platform featuring user-adjustable parameters, allowing users to personalize the AI's communication style and thus cultivate a more enriching and immersive conversational experience. Our user experiment, involving interactions with three types of agents - a baseline agent, one simulating hesitation, and another integrating both hesitation and self-editing behaviors - reveals a preference for the agent that incorporates both behaviors, suggesting an improvement in perceived naturalness and trustworthiness. Through the insights from our design process and both quantitative and qualitative feedback from user experiments, this paper contributes to the multimodal interaction design and user experience for conversational AI, advocating for a more human-like, engaging, and trustworthy communication paradigm.


翻译:近年来,大型语言模型推动了高度智能对话AI的出现,使其能够进行类人对话。然而,一个显著的差异在于,这些AI模型主要快速生成回复,通常产生大量内容,却未能模拟人类认知与打字过程中特有的思考过程。本文提出了一种旨在模拟类人打字行为的设计,包括犹豫和自我编辑等模式,并通过初步用户实验来理解具备类人打字行为的智能体是否以及可能在何种程度上影响对话参与度及其可信度。我们构建了一个具有用户可调参数的交互平台,允许用户个性化AI的沟通风格,从而培养更丰富、更具沉浸感的对话体验。我们的用户实验涉及与三种类型智能体的交互——基线智能体、模拟犹豫行为的智能体以及整合了犹豫与自我编辑行为的智能体——结果显示用户更偏好整合了两种行为的智能体,这表明其在感知自然度与可信度方面有所提升。通过设计过程中的洞见以及用户实验的定量与定性反馈,本文为对话AI的多模态交互设计与用户体验做出贡献,倡导一种更类人、更具吸引力且更可信的沟通范式。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员