In-hand object manipulation is challenging to simulate due to complex contact dynamics, non-repetitive finger gaits, and the need to indirectly control unactuated objects. Further adapting a successful manipulation skill to new objects with different shapes and physical properties is a similarly challenging problem. In this work, we show that natural and robust in-hand manipulation of simple objects in a dynamic simulation can be learned from a high quality motion capture example via deep reinforcement learning with careful designs of the imitation learning problem. We apply our approach on both single-handed and two-handed dexterous manipulations of diverse object shapes and motions. We then demonstrate further adaptation of the example motion to a more complex shape through curriculum learning on intermediate shapes morphed between the source and target object. While a naive curriculum of progressive morphs often falls short, we propose a simple greedy curriculum search algorithm that can successfully apply to a range of objects such as a teapot, bunny, bottle, train, and elephant.
翻译:----
手持物体操纵由于复杂的接触动力学,不重复的手指步态以及需要间接控制非致动物体而难以模拟。将成功的操纵技能进一步适应具有不同形状和物理属性的新物体同样是一个具有挑战性的问题。在这项工作中,我们展示了通过仔细设计模仿学习问题,可以通过深度强化学习从高质量的动作捕捉示例中学习到动态模拟中简单物体的自然而强大的手中操作。我们将我们的方法应用于单手和双手灵巧操作各种不同形状和运动方式的物体。随后,我们通过在源和目标物体之间变形的中间形状上的课程学习进一步改编示例运动到更复杂的形状。虽然一个朴素的渐进变形课程通常难以胜任,但我们提出了一种简单的贪心课程搜索算法,可以成功地应用于一系列物体,如茶壶、兔子、瓶子、火车和大象。