We present a hierarchical Bayesian learning approach to infer jointly sparse parameter vectors from multiple measurement vectors. Our model uses separate conditionally Gaussian priors for each parameter vector and common gamma-distributed hyper-parameters to enforce joint sparsity. The resulting joint-sparsity-promoting priors are combined with existing Bayesian inference methods to generate a new family of algorithms. Our numerical experiments, which include a multi-coil magnetic resonance imaging application, demonstrate that our new approach consistently outperforms commonly used hierarchical Bayesian methods.
翻译:我们提出了一种基于分层贝叶斯学习的方法,用于从多个测量向量中推断联合稀疏的参数向量。我们的模型使用独立的条件高斯先验来描述每个参数向量,并利用共同的伽马分布超参数来促进联合稀疏性。由此产生的联合稀疏优先级,结合现有的贝叶斯推断方法,生成了一个新的算法家族。我们的数值实验,包括一个多线圈磁共振成像应用,证明了我们的新方法始终优于常用的分层贝叶斯方法。