Semi-weakly supervised semantic segmentation (SWSSS) aims to train a model to identify objects in images based on a small number of images with pixel-level labels, and many more images with only image-level labels. Most existing SWSSS algorithms extract pixel-level pseudo-labels from an image classifier - a very difficult task to do well, hence requiring complicated architectures and extensive hyperparameter tuning on fully-supervised validation sets. We propose a method called prediction filtering, which instead of extracting pseudo-labels, just uses the classifier as a classifier: it ignores any segmentation predictions from classes which the classifier is confident are not present. Adding this simple post-processing method to baselines gives results competitive with or better than prior SWSSS algorithms. Moreover, it is compatible with pseudo-label methods: adding prediction filtering to existing SWSSS algorithms further improves segmentation performance.
翻译:半微弱监督的语义分解( SWSSS) 旨在训练一个模型, 用来根据少量带有像素等级标签的图像来识别图像中的物体, 以及更多仅带有图像等级标签的图像。 多数现有的 SWSS 算法从图像分类器中提取像素等级的伪标签, 这是一项非常困难的任务, 需要很好地完成, 因而需要复杂的结构, 并且对完全监督的验证器进行广泛的超参数调 。 我们提议一种叫作预测过滤的方法, 而不是提取假标签, 仅仅使用分类器作为分类器: 它忽略了分类器有信心的分类器所显示的类别中的任何分解预测。 添加这种简单的后处理方法, 使基线的结果比 SWSS 算法具有竞争力或更好。 此外, 它与伪标签方法兼容: 将预测过滤器添加到现有的 SWSS 算法中, 进一步提高分化性性。