With a high probability the Sarlos randomized algorithm of 2006 outputs a nearly optimal least squares solution of a highly overdeterminedlinear system of equations. We propose its simple deterministic variation which computes such a solution for a random input whp and therefore computes it deterministically for a large input class. Unlike the Sarlos original algorithm our variation performs computations at sublinear cost or, as we say, superfast, that is, by using much fewer memory cells and arithmetic operations than an input matrix has entries. Our extensive tests are in good accordance with this result.
翻译:Sarlos 2006 的随机算法极有可能生成一个 高度超定线性方程式的近乎最佳的最小方形解决方案。 我们提出其简单的确定性变量, 用来计算随机输入的解决方案, 从而对大输入类进行确定性计算 。 与 Sarlos 原始算法不同, 我们的变法以亚线性成本或者如我们所说超快计算, 也就是说, 通过使用比输入矩阵少得多的内存单元格和算术操作进行计算 。 我们的广泛测试符合这一结果 。