The aim of this paper is two-fold: firstly, to present subspace embedding properties for $s$-hashing sketching matrices, with $s\geq 1$, that are optimal in the projection dimension $m$ of the sketch, namely, $m=\mathcal{O}(d)$, where $d$ is the dimension of the subspace. A diverse set of results are presented that address the case when the input matrix has sufficiently low coherence (thus removing the $\log^2 d$ factor dependence in $m$, in the low-coherence result of Bourgain et al (2015) at the expense of a smaller coherence requirement); how this coherence changes with the number $s$ of column nonzeros (allowing a scaling of $\sqrt{s}$ of the coherence bound), or is reduced through suitable transformations (when considering hashed -- instead of subsampled -- coherence reducing transformations such as randomised Hadamard). Secondly, we apply these general hashing sketching results to the special case of Linear Least Squares (LLS), and develop Ski-LLS, a generic software package for these problems, that builds upon and improves the Blendenpik solver on dense input and the (sequential) LSRN performance on sparse problems. In addition to the hashing sketching improvements, we add suitable linear algebra tools for rank-deficient and for sparse problems that lead Ski-LLS to outperform not only sketching-based routines on randomly generated input, but also state of the art direct solver SPQR and iterative code HSL on certain subsets of the sparse Florida matrix collection; namely, on least squares problems that are significantly overdetermined, or moderately sparse, or difficult.
翻译:本文的目的为两重 : 首先, 以 1美元 来展示用于 $ 的 以 $\ log% 2 d d d 的 亚空间 嵌入 以 $ 折叠 草图矩阵, 以 $\ geq 1 美元, 以 $ 1 美元 表示, 在 草图的投影维度中, 即 $ $ mathcal{O} (d) 美元 美元, 美元 美元 是 亚空间的维度。 展示了一套多样的结果, 在输入矩阵足够低时, 当输入矩阵足够低时, 以 $\ log% 2 d 的 系数依赖 $ 为单位, 在 Bourgleglein 和 al al- al- ALg 的低 crosmil 效果结果中, 将这种一致性变化与 美元 列的 $ 美元 (允许 $\ maxmathcal cal) comli- liver liver commax max productions lax lax lax lax lax 和 lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax laut lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax laxxxxxxxxxxxxxxxxxxxxxxxxxx 和 和 和 和 和 等 等 和 等 等 等 等 等 等 等 和 和 等 等 等 和 和 和 和 等 和 等 等 等 和 和 和 变变变变变变变变变变变变变变变变变变变变变变变