We contribute to the theoretical understanding of randomized search heuristics for dynamic problems. We consider the classical vertex coloring problem on graphs and investigate the dynamic setting where edges are added to the current graph. We then analyze the expected time for randomized search heuristics to recompute high quality solutions. The (1+1)~Evolutionary Algorithm and RLS operate in a setting where the number of colors is bounded and we are minimizing the number of conflicts. Iterated local search algorithms use an unbounded color palette and aim to use the smallest colors and, consequently, the smallest number of colors. We identify classes of bipartite graphs where reoptimization is as hard as or even harder than optimization from scratch, i.e., starting with a random initialization. Even adding a single edge can lead to hard symmetry problems. However, graph classes that are hard for one algorithm turn out to be easy for others. In most cases our bounds show that reoptimization is faster than optimizing from scratch. We further show that tailoring mutation operators to parts of the graph where changes have occurred can significantly reduce the expected reoptimization time. In most settings the expected reoptimization time for such tailored algorithms is linear in the number of added edges. However, tailored algorithms cannot prevent exponential times in settings where the original algorithm is inefficient.
翻译:我们帮助人们从理论上理解随机搜索的动态问题。 我们考虑在图表中古典的顶点颜色颜色问题, 并调查将边缘添加到当前图表中的动态设置。 然后我们分析随机搜索超度的预期时间, 以重新计算高质量的解决方案。 (1+1)~ 革命性演算法和 RLS 是在一个颜色数量相互交错并且我们正在尽量减少冲突数量的环境下运作的。 循环式本地搜索算法使用无限制色调调色器, 目的是使用最小的颜色, 并因此使用最小的颜色。 我们确定双片图形的类别, 在那里, 重新优化比从抓起的优化更难, 也就是说, 从随机初始化开始。 即使添加一个单一的边缘, 也会导致硬的对称问题。 然而, 一种算法很难被归结的图形类会变得容易。 在多数情况下, 我们的界限显示, 重新优化比优化的颜色更快。 我们进一步显示, 在最短的颜色中, 将操作者进行突变的操作者到最难于从抓取的直径的直径的直径的算法设置中, 。 在这种直径化的算法中, 直径化算法的直径直径化后, 直径化的直径化算法是会大大缩小化的直径化了。