We develop a theory of estimation when in addition to a sample of $n$ observed outcomes the underlying probabilities of the observed outcomes are known, as is typically the case in the context of numerical simulation modeling, e.g. in epidemiology. For this enriched information framework, we design unbiased and consistent ``probability-based'' estimators whose variance vanish exponentially fast as $n\to\infty$, as compared to the power-law decline of classical estimators' variance.
翻译:我们发展了一种概率估计的理论,当我们除了 $n$ 个观察结果的样本之外,已知观察结果的概率,这通常在数字模拟建模中(例如在流行病学中)是一种常见情况。针对这种丰富信息的框架,我们设计了无偏和一致的“基于概率”的估计器,其方差随着 $n\to\infty$ 指数级衰减,与经典估计器的方差幂次衰减相比,具有更快的衰减速率。