Multiple heterogeneous data sources are becoming increasingly available for statistical analyses in the era of big data. As an important example in finite-population inference, we develop a unified framework of the test-and-pool approach to general parameter estimation by combining gold-standard probability and non-probability samples. We focus on the case when the study variable is observed in both datasets for estimating the target parameters, and each contains other auxiliary variables. Utilizing the probability design, we conduct a pretest procedure to determine the comparability of the non-probability data with the probability data and decide whether or not to leverage the non-probability data in a pooled analysis. When the probability and non-probability data are comparable, our approach combines both data for efficient estimation. Otherwise, we retain only the probability data for estimation. We also characterize the asymptotic distribution of the proposed test-and-pool estimator under a local alternative and provide a data-adaptive procedure to select the critical tuning parameters that target the smallest mean square error of the test-and-pool estimator. Lastly, to deal with the non-regularity of the test-and-pool estimator, we construct a robust confidence interval that has a good finite-sample coverage property.
翻译:暂无翻译