This paper proposes a symbolic-numeric Bayesian filtering method for a class of discrete-time nonlinear stochastic systems to achieve high accuracy with a relatively small online computational cost. The proposed method is based on the holonomic gradient method (HGM), which is a symbolic-numeric method to evaluate integrals efficiently depending on several parameters. By approximating the posterior probability density function (PDF) of the state as a Gaussian PDF, the update process of its mean and variance can be formulated as evaluations of several integrals that exactly take into account the nonlinearity of the system dynamics. An integral transform is used to evaluate these integrals more efficiently using the HGM than our previous method. Further, a numerical example is provided to demonstrate the efficiency of the proposed method compared to other existing methods.
翻译:本文建议对一组离散时间的非线性非线性随机系统采用象征性数字过滤法,以相对小的在线计算成本实现高精度。拟议方法以全金基梯度法(HGM)为基础,这是根据若干参数有效评价集成物的一种象征性数字方法。通过将国家的后概率密度函数(PDF)与Gausian PDF相近,其中值和差值的更新过程可以作为对若干集成物的评估,这些集成物的精确度完全考虑到系统动态的非线性。使用一个整体变换法,利用HGM比我们以前的方法更高效地评价这些集成物。此外,还提供了一个数字示例,以表明拟议方法与其他现有方法相比的效率。