We propose an interacting contour stochastic gradient Langevin dynamics (ICSGLD) sampler, an embarrassingly parallel multiple-chain contour stochastic gradient Langevin dynamics (CSGLD) sampler with efficient interactions. We show that ICSGLD can be theoretically more efficient than a single-chain CSGLD with an equivalent computational budget. We also present a novel random-field function, which facilitates the estimation of self-adapting parameters in big data and obtains free mode explorations. Empirically, we compare the proposed algorithm with popular benchmark methods for posterior sampling. The numerical results show a great potential of ICSGLD for large-scale uncertainty estimation tasks.
翻译:我们建议使用一个互动的轮廓梯度Langevin动力学(ICSGLD)取样器(ICSGLD),这是一个令人尴尬地平行的多链梯度Langevin动力学(CSGLD)取样器,具有高效的互动作用。我们表明,ICSGLD在理论上比单链梯度CSGLD(具有同等计算预算)效率更高。我们还提出了一个新的随机场功能,它有利于对大数据中的自适应参数进行估计,并获得自由模式的探索。我们很生动地将拟议的算法与常见的后方取样基准方法进行比较。数字结果显示,ICSGLD在大规模不确定性估算任务方面具有巨大的潜力。