Despite increasing accessibility to function data, effective methods for flexibly estimating underlying functional trend are still scarce. We thereby develop functional version of trend filtering for estimating trend of functional data indexed by time or on general graph by extending the conventional trend filtering, a powerful nonparametric trend estimation technique, for scalar data. We formulate the new trend filtering by introducing penalty terms based on $L_2$-norm of the differences of adjacent trend functions. We develop an efficient iteration algorithm for optimizing the objective function obtained by orthonormal basis expansion. Furthermore, we introduce additional penalty terms to eliminate redundant basis functions, which leads to automatic adaptation of the number of basis functions. The tuning parameter in the proposed method is selected via cross validation. We demonstrate the proposed method through simulation studies and applications to real world datasets.
翻译:尽管功能数据越来越容易获得,但灵活估计基本功能趋势的有效方法仍然很少,因此,我们通过扩展传统趋势过滤技术(一种强大的非参数趋势估计技术),为标量数据制定功能过滤趋势的功能版本,以估计按时间或一般图指数指数的功能数据趋势。我们采用基于相邻趋势功能差异的2美元以中下角的罚款条款来制定新的趋势过滤新趋势。我们开发一种高效的迭代算法,以优化通过正态扩展获得的客观功能。此外,我们引入了额外的处罚条件,以取消冗余的基础功能,从而导致基础功能数量的自动调整。拟议方法的调控参数是通过交叉验证选定的。我们通过模拟研究和对真实世界数据集的应用来展示拟议的方法。