This work considers a super-resolution framework for overcomplete tensor decomposition. Specifically, we view tensor decomposition as a super-resolution problem of recovering a sum of Dirac measures on the sphere and solve it by minimizing a continuous analog of the $\ell_1$ norm on the space of measures. The optimal value of this optimization defines the tensor nuclear norm. Similar to the separation condition in the super-resolution problem, by explicitly constructing a dual certificate, we develop incoherence conditions of the tensor factors so that they form the unique optimal solution of the continuous analog of $\ell_1$ norm minimization. Remarkably, the derived incoherence conditions are satisfied with high probability by random tensor factors uniformly distributed on the sphere, implying global identifiability of random tensor factors.
翻译:这项工作考虑的是一个超分辨率框架,用于处理超完全的沙子分解。 具体地说,我们认为虫子分解是一个超级解析问题,即收回一整批Dirac领域措施的超级解析问题,并且通过尽可能减少一个连续的关于措施空间的1美元标准类似物来解决这个问题。这种优化的最佳价值定义了高温核规范。与超级解析问题的分离条件相似,我们通过明确建立双重证书,发展了这些抗体因素的不一致性条件,从而形成了一个独特的最佳解决方案,即连续类比为$/ell_1美元的标准最小化。 值得注意的是,由此产生的不一致性条件因随机数以数倍数系数一致分布在球体上而非常有可能得到满足,这意味着随机拉子因素的全球可识别性。