While facial attribute manipulation of 2D images via Generative Adversarial Networks (GANs) has become common in computer vision and graphics due to its many practical uses, research on 3D attribute manipulation is relatively undeveloped. Existing 3D attribute manipulation methods are limited because the same semantic changes are applied to every 3D face. The key challenge for developing better 3D attribute control methods is the lack of paired training data in which one attribute is changed while other attributes are held fixed---e.g., a pair of 3D faces where one is male and the other is female but all other attributes, such as race and expression, are the same. To overcome this challenge, we design a novel pipeline for generating paired 3D faces by harnessing the power of GANs. On top of this pipeline, we then propose an enhanced non-linear 3D conditional attribute controller that increases the precision and diversity of 3D attribute control compared to existing methods. We demonstrate the validity of our dataset creation pipeline and the superior performance of our conditional attribute controller via quantitative and qualitative evaluations.


翻译:虽然由于计算机的多种实际用途,通过Genement Aversarial Networks(GANs)对 2D 图像的面部属性操纵在计算机视觉和图形中已变得司空见惯,但对3D 属性操纵的研究相对不完善。现有的 3D 属性操纵方法有限,因为对每3D 面部应用同样的语义变化。 开发更好的 3D 属性控制方法的关键挑战是缺乏配对培训数据,在这些数据中,一个属性被改变,而其他属性则被固定保存,例如,一对3D 面孔,其中一人是男性,另一面是女性,但所有其他属性,例如种族和表达方式相同。为了克服这一挑战,我们设计了一条新的管道,通过利用 GANs 的力量生成配对的 3D 脸部。在此管道上,我们然后提议加强一个非线 3D 有条件属性控制器,以提高3D 属性控制与现有方法的精确性和多样性。我们展示了数据创建管道的有效性,通过定量和定性评估,我们有条件的属性控制器的超能性性性。

0
下载
关闭预览

相关内容

两人亲密社交应用,官网: trypair.com/
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员