We present VIINTER, a method for view interpolation by interpolating the implicit neural representation (INR) of the captured images. We leverage the learned code vector associated with each image and interpolate between these codes to achieve viewpoint transitions. We propose several techniques that significantly enhance the interpolation quality. VIINTER signifies a new way to achieve view interpolation without constructing 3D structure, estimating camera poses, or computing pixel correspondence. We validate the effectiveness of VIINTER on several multi-view scenes with different types of camera layout and scene composition. As the development of INR of images (as opposed to surface or volume) has centered around tasks like image fitting and super-resolution, with VIINTER, we show its capability for view interpolation and offer a promising outlook on using INR for image manipulation tasks.
翻译:我们提出七NTER,这是通过对所捕获图像的隐性神经表征(INR)进行内插来查看内插的一种方法;我们利用与每种图像有关的熟知代号矢量和这些代码之间的内插,以实现观点转变;我们提出一些能够大大提高内插质量的技术。七NTER象征一种在不建造三维结构、估计相机姿势或计算像素通信的情况下实现内插的新方法;我们确认七NTER在多视图场景中的有效性,这些场景有不同类型的相机布局和场景构成。随着图像(相对于表面或体积)的开发,即图像(相对于表面或体积)围绕图像装配和超级分辨率等任务进行,我们通过七NTER,展示了对内插和图像处理任务使用内插能力,并提出了有希望的前景。