Mapping high-fidelity 3D geometry to a representation that allows for intuitive edits remains an elusive goal in computer vision and graphics. The key challenge is the need to model both continuous and discrete shape variations. Current approaches, such as implicit shape representation, lack straightforward interpretable encoding, while others that employ procedural methods output coarse geometry. We present GeoCode, a technique for 3D shape synthesis using an intuitively editable parameter space. We build a novel program that enforces a complex set of rules and enables users to perform intuitive and controlled high-level edits that procedurally propagate at a low level to the entire shape. Our program produces high-quality mesh outputs by construction. We use a neural network to map a given point cloud or sketch to our interpretable parameter space. Once produced by our procedural program, shapes can be easily modified. Empirically, we show that GeoCode can infer and recover 3D shapes more accurately compared to existing techniques and we demonstrate its ability to perform controlled local and global shape manipulations.
翻译:映射高纤维 3D 几何以表示能够直观编辑的表示式, 仍然是计算机视觉和图形中一个难以实现的目标。 关键的挑战在于需要建模连续和离散的形状变异。 目前的方法, 如隐含形状表示, 缺乏直截了当的可解释编码, 而其他的方法则使用程序方法, 输出粗糙的几何。 我们展示了 GeoCode, 一种使用直观可编辑的参数空间进行 3D 形状合成的技术。 我们建立一个新程序, 强制实施一套复杂的规则, 使用户能够进行直观和受控的高层次的编辑, 在程序上向整个形状传播。 我们的程序通过构造产生高质量的网格输出出高质量的网格输出。 我们使用一个神经网络来绘制一个指定的点云或草图来绘制可解释的参数空间。 一旦由我们的程序程序生成, 形状可以很容易被修改。 当然, 我们显示GeoCode可以比现有技术更精确地推断和回收3D, 我们展示其进行受控的地方和全球形状操纵的能力 。