Predictive machine learning models nowadays are often updated in a stateless and expensive way. The two main future trends for companies that want to build machine learning-based applications and systems are real-time inference and continual updating. Unfortunately, both trends require a mature infrastructure that is hard and costly to realize on-premise. This paper defines a novel software service and model delivery infrastructure termed Continual Learning-as-a-Service (CLaaS) to address these issues. Specifically, it embraces continual machine learning and continuous integration techniques. It provides support for model updating and validation tools for data scientists without an on-premise solution and in an efficient, stateful and easy-to-use manner. Finally, this CL model service is easy to encapsulate in any machine learning infrastructure or cloud system. This paper presents the design and implementation of a CLaaS instantiation, called LiquidBrain, evaluated in two real-world scenarios. The former is a robotic object recognition setting using the CORe50 dataset while the latter is a named category and attribute prediction using the DeepFashion-C dataset in the fashion domain. Our preliminary results suggest the usability and efficiency of the Continual Learning model services and the effectiveness of the solution in addressing real-world use-cases regardless of where the computation happens in the continuum Edge-Cloud.
翻译:目前,预测的机器学习模式往往以无国籍和昂贵的方式更新。对于希望建立机器学习应用程序和系统的公司来说,两个主要的未来趋势是实时推论和不断更新。不幸的是,这两种趋势都需要成熟的基础设施,很难在预想中实现,成本很高。本文定义了一种新型软件服务和模式交付基础设施,称为“连续学习服务”(CLAAS),以解决这些问题。具体地说,它包含不断的机器学习和持续整合技术。它为没有预设解决方案、以高效、状态明确和易于使用的方式为数据科学家提供模式更新和验证工具提供支持。最后,CL模型服务很容易在任何机器学习基础设施或云系统中封装。本文介绍了CLaaS即时化(称为“液压”)的设计和实施,在两种现实世界情景中加以评估。前者是使用CORe50数据集的机器人物体识别设置,而后者则是使用时尚域深时尚数据集命名的类别和属性预测。我们的初步结果表明,在任何机器学习基础设施基础设施基础设施或云系统中,在现实的计算中,不断学习我们是如何使用周期性地计算。