This paper conducts fairness testing on automated pedestrian detection, a crucial but under-explored issue in autonomous driving systems. We evaluate eight widely-studied pedestrian detectors across demographic groups on large-scale real-world datasets. To enable thorough fairness testing, we provide extensive annotations for the datasets, resulting in 8,311 images with 16,070 gender labels, 20,115 age labels, and 3,513 skin tone labels. Our findings reveal significant fairness issues related to age and skin tone. The detection accuracy for adults is 19.67% higher compared to children, and there is a 7.52% accuracy disparity between light-skin and dark-skin individuals. Gender, however, shows only a 1.1% difference in detection accuracy. Additionally, we investigate common scenarios explored in the literature on autonomous driving testing, and find that the bias towards dark-skin pedestrians increases significantly under scenarios of low contrast and low brightness. We publicly release the code, data, and results to support future research on fairness in autonomous driving.
翻译:暂无翻译