A unified frequency domain cross-validation (FDCV) method is proposed to obtain a heteroskedasticity and autocorrelation consistent (HAC) standard error. This method enables model/tuning parameter selection across both parametric and nonparametric spectral estimators simultaneously. The candidate class for this approach consists of restricted maximum likelihood-based (REML) autoregressive spectral estimators and lag-weights estimators with the Parzen kernel. Additionally, an efficient technique for computing the REML estimators of autoregressive models is provided. Through simulations, the reliability of the FDCV method is demonstrated, comparing favorably with popular HAC estimators such as Andrews-Monahan and Newey-West.
翻译:暂无翻译