Blind pansharpening addresses the problem of generating a high spatial-resolution multi-spectral (HRMS) image given a low spatial-resolution multi-spectral (LRMS) image with the guidance of its associated spatially misaligned high spatial-resolution panchromatic (PAN) image without parametric side information. In this paper, we propose a fast approach to blind pansharpening and achieve state-of-the-art image reconstruction quality. Typical blind pansharpening algorithms are often computationally intensive since the blur kernel and the target HRMS image are often computed using iterative solvers and in an alternating fashion. To achieve fast blind pansharpening, we decouple the solution of the blur kernel and of the HRMS image. First, we estimate the blur kernel by computing the kernel coefficients with minimum total generalized variation that blur a downsampled version of the PAN image to approximate a linear combination of the LRMS image channels. Then, we estimate each channel of the HRMS image using local Laplacian prior to regularize the relationship between each HRMS channel and the PAN image. Solving the HRMS image is accelerated by both parallelizing across the channels and by fast numerical algorithms for each channel. Due to the fast scheme and the powerful priors we used on the blur kernel coefficients (total generalized variation) and on the cross-channel relationship (local Laplacian prior), numerical experiments demonstrate that our algorithm outperforms state-of-the-art model-based counterparts in terms of both computational time and reconstruction quality of the HRMS images.


翻译:盲人平面图解解决了生成高空间分辨率多光谱图像的问题。 以低空间分辨率多光谱图像( LRMS)为背景, 其指导是空间错乱的高空间分辨率全色图像( PAN), 没有参数侧面信息 。 在本文中, 我们建议对盲人平面图进行快速处理, 并实现最先进的图像重建质量 。 典型的盲人平面平面算法往往是计算密集的, 因为模糊的内核和目标的HRMS图像往往使用迭接式解答器和交替方式计算。 为了实现快速盲泛光色全光谱多光谱图像( LRMS ) 图像的快速平面图像, 我们分解了模糊高空高空间分辨率高分辨率全色图像的解决方案 。 我们通过快速平面平面平面图像的快速平面结构, 快速平面平面平面平面平面平面平面图像, 快速平面平面平面平面平面平面平面平面平面图像, 快速平面平面平面平面平面平面平面平面图 。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
最新开源 RGBD+IMU数据集:FMDataset
计算机视觉life
42+阅读 · 2019年9月21日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
最新开源 RGBD+IMU数据集:FMDataset
计算机视觉life
42+阅读 · 2019年9月21日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员