Image fusion aims at estimating a high-resolution spectral image from a low-spatial-resolution hyperspectral image and a low-spectral-resolution multispectral image. In this regard, compressive spectral imaging (CSI) has emerged as an acquisition framework that captures the relevant information of spectral images using a reduced number of measurements. Recently, various image fusion methods from CSI measurements have been proposed. However, these methods exhibit high running times and face the challenging task of choosing sparsity-inducing bases. In this paper, a deep network under the algorithm unrolling approach is proposed for fusing spectral images from compressive measurements. This architecture, dubbed LADMM-Net, casts each iteration of a linearized version of the alternating direction method of multipliers into a processing layer whose concatenation deploys a deep network. The linearized approach enables obtaining fusion estimates without resorting to costly matrix inversions. Furthermore, this approach exploits the benefits of learnable transforms to estimate the image details included in both the auxiliary variable and the Lagrange multiplier. Finally, the performance of the proposed technique is evaluated on two spectral image databases and one dataset captured at the laboratory. Extensive simulations show that the proposed method outperforms the state-of-the-art approaches that fuse spectral images from compressive measurements.


翻译:图像融合的目的是从低空间分辨率超光谱图像和低光谱多光谱图像中估计高分辨率光谱图像和低光谱多光谱图像。 在这方面,压缩光谱成像(CSI)已形成一个获取框架,利用较少的测量数量获取光谱图像的相关信息。最近,提出了来自CSI测量的各种图像融合方法。然而,这些方法显示运行时间高,面临选择宽度诱导基础的艰巨任务。在本文中,提议根据算法解滚动方法建立一个深网络,用于从压缩测量中折射光谱图像。这一结构,称为LADMM-Net,将交替方向方法的线性版本推入一个处理层,该处理层配置了一个更深的网络。线性方法使得在不采用昂贵的矩阵转换的情况下获得聚变估计。此外,这一方法利用了可学习的变换的好处,以估计包含在辅助变量和拉戈连增倍度测量结果中的图像细节。最后,由LADMMMMM-Net组成的这一结构,将一个线性版本的交替方向方法向一个加工层的模型,用于两个模型的模型的模型的模型,在两个模型的模型模型上,用来评估一个模型的模型的模型的模型的模型的模型的模型的演化方法。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2021年2月15日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员