Deploying machine learning models on mobile devices has gained increasing attention. To tackle the model generalization problem with the limitations of hardware resources on the device, the device model needs to be lightweight by techniques such as model compression from the cloud model. However, the major obstacle to improve the device model generalization is the distribution shift between the data of cloud and device models, since the data distribution on device model often changes over time (e.g., users might have different preferences in recommendation system). Although real-time fine-tuning and distillation method take this situation into account, these methods require on-device training, which are practically infeasible due to the low computational power and a lack of real-time labeled samples on the device. In this paper, we propose a novel task-agnostic framework, named MetaNetwork, for generating adaptive device model parameters from cloud without on-device training. Specifically, our MetaNetwork is deployed on cloud and consists of MetaGenerator and MetaStabilizer modules. The MetaGenerator is designed to learn a mapping function from samples to model parameters, and it can generate and deliver the adaptive parameters to the device based on samples uploaded from the device to the cloud. The MetaStabilizer aims to reduce the oscillation of the MetaGenerator, accelerate the convergence and improve the model performance during both training and inference. We evaluate our method on two tasks with three datasets. Extensive experiments show that MetaNetwork can achieve competitive performances in different modalities.


翻译:移动设备上安装机器学习模型的问题日益引起人们的关注。 为解决模型的通用问题,由于设备硬件资源有限,设备模型需要使用云式压缩模型等技术轻量化。 然而,改进设备模型一般化的主要障碍是云体和装置模型数据之间的分布变化,因为设备模型上的数据分配经常随时间变化(例如,用户在建议系统中可能有不同的偏好),尽管实时微调和蒸馏方法考虑到这种情况,但这些方法需要安装培训,因为计算能力低,设备上缺乏实时标签样本,实际上不可行。在本文中,我们提议了一个名为MetNetwork的新任务-感化框架,用于从云体中生成适应性能模型参数,而无需在线操作培训。具体地说,我们的MetNetwork被安装在云上,由MetaGenerator和MetaStabiizer 模块组成。MetaGeraGerator的设计是为了从样本到模型参数中学习一个竞争性的绘图功能,这些功能实际上不可行,因为设备上缺少实时标标标标的样本。 我们可以生成并交付适应性调整性调整性参数,在云级测试中,在两个模型上,从而显示该模型上显示。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
26+阅读 · 2019年3月5日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员