Deep Learning (DL) is a surprisingly successful branch of machine learning. The success of DL is usually explained by focusing analysis on a particular recent algorithm and its traits. Instead, we propose that an explanation of the success of DL must look at the population of all algorithms in the field and how they have evolved over time. We argue that cultural evolution is a useful framework to explain the success of DL. In analogy to biology, we use `development' to mean the process converting the pseudocode or text description of an algorithm into a fully trained model. This includes writing the programming code, compiling and running the program, and training the model. If all parts of the process don't align well then the resultant model will be useless (if the code runs at all!). This is a constraint. A core component of evolutionary developmental biology is the concept of deconstraints -- these are modification to the developmental process that avoid complete failure by automatically accommodating changes in other components. We suggest that many important innovations in DL, from neural networks themselves to hyperparameter optimization and AutoGrad, can be seen as developmental deconstraints. These deconstraints can be very helpful to both the particular algorithm in how it handles challenges in implementation and the overall field of DL in how easy it is for new ideas to be generated. We highlight how our perspective can both advance DL and lead to new insights for evolutionary biology.
翻译:深学习( DL) 是机器学习的一个令人惊讶的成功分支 。 DL 的成功通常通过集中分析特定的最近算法及其特性来解释。 相反, 我们提议, DL 成功的解释必须看实地所有算法的人群, 以及它们如何随着时间演变。 我们争辩说, 文化进化是一个有用的框架来解释 DL 的成功。 与生物学相比, 我们使用“ 开发” 来表示将算法的伪编码或文字描述转换成一个经过充分训练的模式的过程。 这包括编写编程代码, 编程和运行程序, 以及培训模型。 如果过程的所有部分不协调, 那么结果模型将毫无用处( 如果代码运行的话! ) 。 这是一个制约。 进化发展生物学的核心组成部分是脱节概念。 这些是改变发展进程,通过自动调节其它组成部分的变化避免完全失败。 我们建议, DL 的很多重要的创新, 从神经网络本身到超分调调调调调制和Autograd, 都可以被看作是一个发展解析的进模型。 这些进化模型是如何在生物学进化领域产生出新的进化和进化的进进进进化的进进进进进进进进进进进进进进中是如何有多么有帮助的进进进进进进进进进进进进进进进进进进进进进进进进进进进进的进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进