This paper explores the possibilities of applying physics-informed neural networks (PINNs) in topology optimization (TO) by introducing a fully self-supervised TO framework that is based on PINNs. This framework solves the forward elasticity problem by the deep energy method (DEM). Instead of training a separate neural network to update the density distribution, we leverage the fact that the compliance minimization problem is self-adjoint to express the element sensitivity directly in terms of the displacement field from the DEM model, and thus no additional neural network is needed for the inverse problem. The method of moving asymptotes is used as the optimizer for updating density distribution. The implementation of Neumann, Dirichlet, and periodic boundary conditions are described in the context of the DEM model. Three numerical examples are presented to demonstrate framework capabilities: (1) Compliance minimization in 2D under different geometries and loading, (2) Compliance minimization in 3D, and (3) Maximization of homogenized shear modulus to design 2D meta material unit cells. The results show that the optimized designs from the DEM-based framework are very comparable to those generated by the finite element method, and shed light on a new way of integrating PINN-based simulation methods into classical computational mechanics problems.
翻译:本文探讨将物理知情神经网络(PINNs)应用到地形优化中的可能性,方法是采用完全自我监督的、基于PINNs的框架。这个框架通过深能方法解决前方弹性问题。我们没有培训单独的神经网络来更新密度分布,而是利用遵约最小化问题自联来直接表达DEM模型迁移场的元素敏感度,因此不需要为反向问题设置额外的神经网络。移动静脉管的方法被用作更新密度分布的优化器。Neumann、Drichlet和定期边界条件的实施在DEM模型中作了描述。我们用三个数字例子来展示框架能力:(1) 在不同地形和装载下将2D的合规性最小化,(2) 3D的合规性最小化,以及(3) 将同质制剪模模模组设计最大化以设计2D元材料单元。结果显示,基于DEMN框架的优化设计是更新密度分布的优化方法,在DEMN的模型中描述Neumann、Drichlet和定期边界条件的落实情况。提出了三个数字例子,以证明框架能力:(1) 在不同的地理和装成的模型的模型的模型的模型中,这些方法的优化设计是极易化方法。