项目名称: 低温等离子体与水溶液相互作用的传质与化学过程研究

项目编号: No.51307134

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 电工技术

项目作者: 刘定新

作者单位: 西安交通大学

项目金额: 26万元

中文摘要: 低温等离子体与水溶液的相互作用机理,是当前等离子体科学面临的一个挑战。物理和化学过程在气液两相中强烈耦合,是其中的主要难点。为此,本申请通过对放电形式的选择,淡化理化过程的耦合关系,突出传质与化学过程这两个共性问题,开展定量研究。在对气相区、相间膜区和液相区分别建模的基础上,提出气液两相耦合的动态仿真模型,开展一体化的自洽仿真分析。模型的有效性通过光谱法、酶标法等实验检测方法验证。然后,应用该模型获取活性粒子在气液两相中的时空演变过程,找出转化的关键路径,阐释活性粒子传质与化学过程的内在机理。进一步,针对典型的含氧活性粒子(O3和H2O2)和含氮活性粒子(NO),综合考察影响传质与转化的关键因素,提出针对渗透深度、存活时间和能量效率的调控策略。在本项目的研究基础上,仿真方法可考察更多理化过程的耦合,逐步实现更复杂的低温等离子体与水溶液相互作用的定量研究。

中文关键词: 等离子体与水溶液相互作用;仿真模型;实验诊断;活性粒子;调控方法

英文摘要: The interaction between low-temperature plasma and aqueous solution is a major and unmet scientific challenge. The main difficulty lies in the complex and dynamic coupling of physical and chemical processes. In this application, we propose to decouple some physicochemical processes with a simple plasma-liquid interaction model and focus two common processes in liquid-containing plasmas, i.e. mass transfer and spatial evolution of chemistry, so as to facilitate a quantitative description of the plasma-liquid interaction. Based on the modeling of the gas phase plasma region, the gas-liquid interface region and the solution region, an integral model is put forward for the self-consistent simulation of all three regions. With selective experimental validation using optical emission spectroscopy, UV absorption spectroscopy and enzyme-labeled assay, the model is used to obtain the spatio-temporal evolutions and the dominant conversion paths of reactive species in both gas and aqueous phases. As a result, the underlying mechanism of mass transfer and chemical processes is clarified. Furthermore, generation and loss mechanisms of main reactive oxygen species, e.g. O3 and H2O2, and reactive nitrogen species, e.g. NO, are studied to control and maximize their penetration depth, lifetime and energy efficiency. Once develo

英文关键词: Plasma-liquid interaction;Simulation model;Experimental diagnostics;Reactive species;Control method

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
流行病数据可视分析综述
专知会员服务
25+阅读 · 2022年3月21日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
109+阅读 · 2021年4月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
一图搞定ML!2020版机器学习技术路线图,35页ppt
专知会员服务
93+阅读 · 2020年7月28日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关主题
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
流行病数据可视分析综述
专知会员服务
25+阅读 · 2022年3月21日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
109+阅读 · 2021年4月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
一图搞定ML!2020版机器学习技术路线图,35页ppt
专知会员服务
93+阅读 · 2020年7月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员