Premier cloud service providers (CSPs) offer two types of purchase options, namely on-demand and spot instances, with time-varying features in availability and price. Users like startups have to operate on a limited budget and similarly others hope to reduce their costs. While interacting with a CSP, central to their concerns is the process of cost-effectively utilizing different purchase options possibly in addition to self-owned instances. A job in data-intensive applications is typically represented by a directed acyclic graph which can further be transformed into a chain of tasks. The key to achieving cost efficiency is determining the allocation of a specific deadline to each task, as well as the allocation of different types of instances to the task. In this paper, we propose a framework that determines the optimal allocation of deadlines to tasks. The framework also features an optimal policy to determine the allocation of spot and on-demand instances in a predefined time window, and a near-optimal policy for allocating self-owned instances. The policies are designed to be parametric to support the usage of online learning to infer the optimal values against the dynamics of cloud markets. Finally, several intuitive heuristics are used as baselines to validate the cost improvement brought by the proposed solutions. We show that the cost improvement over the state-of-the-art is up to 24.87% when spot and on-demand instances are considered and up to 59.05% when self-owned instances are considered.


翻译:59. 实现成本效率的关键是确定每项任务的具体最后期限的分配,以及不同类型事件的分配。在本文件中,我们提议了一个框架,确定对任务的最后期限的最佳分配。这个框架还以最佳政策为特点,在预先确定的时间窗口中确定点数和需求情况的分配,并采用近乎最佳的政策来分配自有事件。在设计政策时,我们考虑的是:在考虑成本时,采用直观的改进。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月26日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员