The prevalence of e-commerce has made detailed customers' personal information readily accessible to retailers, and this information has been widely used in pricing decisions. When involving personalized information, how to protect the privacy of such information becomes a critical issue in practice. In this paper, we consider a dynamic pricing problem over $T$ time periods with an \emph{unknown} demand function of posted price and personalized information. At each time $t$, the retailer observes an arriving customer's personal information and offers a price. The customer then makes the purchase decision, which will be utilized by the retailer to learn the underlying demand function. There is potentially a serious privacy concern during this process: a third party agent might infer the personalized information and purchase decisions from price changes from the pricing system. Using the fundamental framework of differential privacy from computer science, we develop a privacy-preserving dynamic pricing policy, which tries to maximize the retailer revenue while avoiding information leakage of individual customer's information and purchasing decisions. To this end, we first introduce a notion of \emph{anticipating} $(\varepsilon, \delta)$-differential privacy that is tailored to dynamic pricing problem. Our policy achieves both the privacy guarantee and the performance guarantee in terms of regret. Roughly speaking, for $d$-dimensional personalized information, our algorithm achieves the expected regret at the order of $\tilde{O}(\varepsilon^{-1} \sqrt{d^3 T})$, when the customers' information is adversarially chosen. For stochastic personalized information, the regret bound can be further improved to $\tilde{O}(\sqrt{d^2T} + \varepsilon^{-2} d^2)$


翻译:电子商务的流行使得零售商能够随时获得详细的客户个人信息,{ 并且这种信息被广泛用于定价决定。 当涉及到个性化信息时, 如何保护这类信息的隐私可能成为实践中的一个关键问题。 在本文中, 我们考虑一个动态的定价问题, 超过$T的时段, 使用 emph{ 未知} 公布价格和个性化信息的需求功能。 每次零售商都会观察一个抵达的客户的个人信息, 并提供一个价格。 然后客户做出购买决定, 零售商将利用它来学习基本的需求功能。 在这个过程中, 可能存在严重的隐私问题: 第三方代理商可能会将个性化信息从定价系统的价格变化中推导出购买决定。 使用计算机科学差异性隐私的基本框架, 我们开发一个隐私保存动态定价政策, 尽量避免个人客户信息泄漏和购买决定。 至此, 我们首先引入一个概念化概念, 客户将进一步学习 $( varisilal, delta) 实现个人隐私的排序。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
已删除
将门创投
7+阅读 · 2019年10月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Federated Deep Learning with Bayesian Privacy
Arxiv
0+阅读 · 2021年9月27日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员