This work proposes a novel strategy for social learning by introducing the critical feature of adaptation. In social learning, several distributed agents update continually their belief about a phenomenon of interest through: i) direct observation of streaming data that they gather locally; and ii) diffusion of their beliefs through local cooperation with their neighbors. Traditional social learning implementations are known to learn well the underlying hypothesis (which means that the belief of every individual agent peaks at the true hypothesis), achieving steady improvement in the learning accuracy under stationary conditions. However, these algorithms do not perform well under nonstationary conditions commonly encountered in online learning, exhibiting a significant inertia to track drifts in the streaming data. In order to address this gap, we propose an Adaptive Social Learning (ASL) strategy, which relies on a small step-size parameter to tune the adaptation degree. First, we provide a detailed characterization of the learning performance by means of a steady-state analysis. Focusing on the small step-size regime, we establish that the ASL strategy achieves consistent learning under standard global identifiability assumptions. We derive reliable Gaussian approximations for the probability of error (i.e., of choosing a wrong hypothesis) at each individual agent. We carry out a large deviations analysis revealing the universal behavior of adaptive social learning: the error probabilities decrease exponentially fast with the inverse of the step-size, and we characterize the resulting exponential learning rate. Second, we characterize the adaptation performance by means of a detailed transient analysis, which allows us to obtain useful analytical formulas relating the adaptation time to the step-size.


翻译:这项工作提出了社会学习的新战略,引入了适应的关键特征。在社会学习中,一些分布式的代理商不断通过下列方式更新他们对一种感兴趣的现象的信念:(一) 直接观察他们在当地收集的流数据;和(二) 通过当地与邻居的合作传播他们的信仰。传统社会学习的实施众所周知,非常了解基本假设(这意味着每个代理商的信仰在真实假设中达到峰值),在固定条件下稳步提高学习的准确性。然而,这些算法在网上学习通常遇到的非固定条件下效果不佳,在跟踪流数据流中的漂移方面表现出相当的惯性。为了缩小这一差距,我们建议采用适应性社会学习战略,依靠一个小的分级参数来调整适应适应适应程度。首先,我们通过稳定状态分析的方式详细描述学习业绩的特征,以小的分级制度为重点,我们确定ASL战略在标准的全球身份假设中取得了一致的学习。我们从可靠的高斯对流数据流数据的精确性偏差进行精确的精确性精确度,我们从每个分级分析中选择了一个快速的递减率。我们每个分级的递误差率,我们选择了每个分级的分级分析。 我们选择了每个分级的分级的分级的分级的分级的分级分析。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年12月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
5+阅读 · 2020年6月16日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年12月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年9月21日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
5+阅读 · 2020年6月16日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员