In recent years, Procedural Level Generation via Machine Learning (PLGML) techniques have been applied to generate game levels with machine learning. These approaches rely on human-annotated representations of game levels. Creating annotated datasets for games requires domain knowledge and is time-consuming. Hence, though a large number of video games exist, annotated datasets are curated only for a small handful. Thus current PLGML techniques have been explored in limited domains, with Super Mario Bros. as the most common example. To address this problem, we present tile embeddings, a unified, affordance-rich representation for tile-based 2D games. To learn this embedding, we employ autoencoders trained on the visual and semantic information of tiles from a set of existing, human-annotated games. We evaluate this representation on its ability to predict affordances for unseen tiles, and to serve as a PLGML representation for annotated and unannotated games.
翻译:近些年来,通过机器学习(PLGML)程序层面的生成技术被应用到机器学习(PLGML)来创造游戏水平。这些方法依赖于人文的游戏水平说明。为游戏创建附加说明的数据集需要域知识,而且耗费时间。因此,尽管存在大量视频游戏,但附加说明的数据集只为少数几家。因此,在有限的领域探索了目前的PLGML技术,以超级Mario Bros为最常见的例子。为了解决这一问题,我们为基于瓷砖的 2D 游戏展示了瓷嵌嵌嵌嵌、一个统一的、价格丰富的2D 游戏演示。为了学习这种嵌嵌入,我们使用经过培训的自动编码器,从现有的一组人文附加说明的游戏中获取瓷砖的视觉和语义信息。我们评估了这种显示器在预测未知瓷砖的支付能力,并作为有附加说明和无注释的游戏的PLGML代表。