In recent cross-disciplinary studies involving both optics and computing, single-photon-based decision-making has been demonstrated by utilizing the wave-particle duality of light to solve multi-armed bandit problems. Furthermore, entangled-photon-based decision-making has managed to solve a competitive multi-armed bandit problem in such a way that conflicts of decisions among players are avoided while ensuring equality. However, as these studies are based on the polarization of light, the number of available choices is limited to two, corresponding to two orthogonal polarization states. Here we propose a scalable principle to solve competitive decision-making situations by using the orbital angular momentum as the tunable degree of freedom of photons, which theoretically allows an unlimited number of arms. Moreover, by extending the Hong-Ou-Mandel effect to more than two states, we theoretically establish an experimental configuration able to generate entangled photon states with orbital angular momentum and conditions that provide conflict-free selections at every turn. We numerically examine total rewards regarding three-armed bandit problems, for which the proposed strategy accomplishes almost the theoretical maximum, which is greater than a conventional mixed strategy intending to realize Nash equilibrium. This is thanks to the entanglement property that achieves no-conflict selections, even in the exploring phase to find the best arms.


翻译:在最近涉及光学和计算机的跨学科研究中,单枚磷基决策的利用波粒双光解决多武装土匪问题的双光来解决多武装土匪问题,证明了单枚磷基决策的跨专业性研究。此外,纠缠的磷基决策解决了竞争性多武装土匪问题,从而避免了玩家之间决策的冲突,同时确保了平等。然而,由于这些研究基于光线两极分化,现有选择的数量限于两个,对应两个正方位的两极分化国家。我们在这里提出了一个可扩展的原则,即通过利用轨道角动力解决竞争性决策情况,作为光子自由程度的三角动力,理论上允许无限数量的武器。此外,通过将红牛曼德尔效应扩大到两个以上的国家,我们理论上建立了一个实验性配置,能够产生具有轨道角动和条件的缠绕光状态,每转弯道提供无冲突选择。我们从数字上审视了三重土制问题的全部奖赏,为此,拟议的战略甚至完成了理论上的角力自由度,在理论上选择武器方面几乎可以做到无限数量。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月4日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年9月1日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
4+阅读 · 2018年4月10日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员