We initiate the study of Ramsey numbers of trails. Let $k \geq 2$ be a positive integer. The Ramsey number of trails with $k$ vertices is defined as the the smallest number $n$ such that for every graph $H$ with $n$ vertices, $H$ or the complete $\overline{H}$ contains a trail with $k$ vertices. We prove that the Ramsey number of trails with $k$ vertices is at most $k$ and at least $2\sqrt{k}+\Theta(1)$. This improves the trivial upper bound of $\lfloor 3k/2\rfloor -1$.
翻译:我们开始研究拉姆齐的轨迹数。 让 $\ geq 2$ 是一个正整数。 拉姆齐的脊椎数被定义为最小数( $0 ), 也就是说, 每张图中, 以美元为顶, $H$ 或整张美元为底线 {H} 都包含以美元为顶的线索。 我们证明, 以美元为顶的 拉姆齐 的 斜体数最多是 $2 k$, 至少是 $2\ sqrt{ k ⁇ theta (1)$ 。 这改善了 $1 k/2 rforum - 1$ 的微小上限 。