We initiate the study of Ramsey numbers of trails. Let $k \geq 2$ be a positive integer. The Ramsey number of trails with $k$ vertices is defined as the the smallest number $n$ such that for every graph $H$ with $n$ vertices, $H$ or the complete $\overline{H}$ contains a trail with $k$ vertices. We prove that the Ramsey number of trails with $k$ vertices is at most $k$ and at least $2\sqrt{k}+\Theta(1)$. This improves the trivial upper bound of $\lfloor 3k/2\rfloor -1$.


翻译:我们开始研究拉姆齐的轨迹数。 让 $\ geq 2$ 是一个正整数。 拉姆齐的脊椎数被定义为最小数( $0 ), 也就是说, 每张图中, 以美元为顶, $H$ 或整张美元为底线 {H} 都包含以美元为顶的线索。 我们证明, 以美元为顶的 拉姆齐 的 斜体数最多是 $2 k$, 至少是 $2\ sqrt{ k ⁇ theta (1)$ 。 这改善了 $1 k/2 rforum - 1$ 的微小上限 。

0
下载
关闭预览

相关内容

【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
45+阅读 · 2021年9月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年10月20日
VIP会员
相关主题
相关VIP内容
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
45+阅读 · 2021年9月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员