Strong blocking sets and their counterparts, minimal codes, attracted lots of attention in the last years. Combining the concatenating construction of codes with a geometric insight into the minimality condition, we explicitly provide infinite families of small strong blocking sets, whose size is linear in the dimension of the ambient projective spaces. As a byproduct, small saturating sets are obtained.


翻译:坚固的屏蔽装置和它们的对等装置,最低代码,在过去的几年中吸引了人们的极大关注。 将混合的代码构造与对最小性条件的几何洞察结合起来,我们明确提供小型坚固的屏蔽装置的无限家庭,其尺寸在周围投影空间的尺寸是线性的。 作为副产品,我们获得了小的饱和装置。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
114+阅读 · 2020年1月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Keras实例:PointNet点云分类
专知
6+阅读 · 2020年5月30日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月23日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月21日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
114+阅读 · 2020年1月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Keras实例:PointNet点云分类
专知
6+阅读 · 2020年5月30日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员