Simon's problem plays an important role in the history of quantum algorithms, as it inspired Shor to discover the celebrated quantum algorithm solving integer factorization in polynomial time. Besides, the quantum algorithm for Simon's problem has been recently applied to break symmetric cryptosystems. Generalized Simon's problem, denoted by $\mathsf{GSP}(p,n,k)$, is a natural extension of Simon's problem. In this paper we consider the query complexity of $\mathsf{GSP}(p,n,k)$. First, it is not difficult to design a quantum algorithm solving the above problem with query complexity of $O(n-k)$. However, so far it is not clear what is the classical query complexity of the problem, and revealing this complexity is necessary for clarifying the computational power gap between quantum and classical computing on the problem. To tackle this problem, we prove that any classical (deterministic or randomized) algorithm for $\mathsf{GSP}(p,n,k)$ has to query at least $\Omega\left(\max\{k, \sqrt{p^{n-k}}\}\right)$ values and any classical nonadaptive deterministic algorithm for $\mathsf{GSP}(p,n,k)$ has to query at least $\Omega\left(\max\{k, \sqrt{k \cdot p^{n-k}}\}\right)$ values. Hence, we clearly show the classical computing model is less powerful than the quantum counterpart, in terms of query complexity for the generalized Simon's problem. Moreover, we obtain an upper bound $O\left(\max\{k, \sqrt{k \cdot p^{n-k}}\}\right)$ on the classical deterministic query complexity of $\mathsf{GSP}(p,n,k)$, by devising a subtle classical algorithm based on group theory and the divide-and-conquer approach. Therefore, we have an almost full characterization of the classical deterministic query complexity of the generalized Simon's problem.
翻译:西蒙的问题在量子算法历史中扮演了重要角色, 因为它激励了 Shor 发现在多式时间里, 已知的量子算法解决整数因素化的质子算法。 此外, 最近还应用了西蒙问题的量子算法来打破对称加密系统。 普遍化的西蒙问题, 由 $\ mathfsf{GSP} (p,n,k) 表示, 是西蒙问题的自然延伸。 在本文中, 我们考虑的是 $( mathfs f} GSP} (p,n,k) 。 首先, 设计一个以 $(n-k) 的质子算算法解决上述问题的量子算法并不困难。 然而, 目前还不清楚的是, 要澄清量子和经典计算之间在问题的计算能力上的差距。 为了解决这个问题, 我们证明任何关于 美元( deministic) 和 Ral- rick 的(rick) 算法的(n, p,n,k) 数字的量算算算法在 的基值上, 直数(ral===) 美元, 数字的基值在(rak=) 数字的值上, 直数组中, 或直值显示, 或直值显示, 。