In this paper we outline the development of a scalable PBF thermal history simulation built on CAPL and based on melt pool physics and dynamics. The new approach inherits linear scalability from CAPL and has three novel ingredients. Firstly, to simulate the laser scanning on a solid surface, we discretize the entire simulation domain instead of only the manufacturing toolpath by appending fictitious paths to the manufacturing toolpath. Secondly, to simulate the scanning on overlapping toolpaths, the path-scale simulations are initialized by a Voronoi diagram for line segments discretized from the manufacturing toolpath. Lastly, we propose a modified conduction model that considers the high thermal gradient around the melt pool. We validate the simulation against melt pool images captured with the co-axial melt pool monitoring (MPM) system on the NIST Additive Manufacturing Metrology Testbed (AMMT). Excellent agreements in the length and width of melt pools are found between simulations and experiments conducted on a custom-controlled laser powder bed fusion (LPBF) testbed on a nickel-alloy (IN625) solid surface. To the authors' best knowledge, this paper is the first to validate a full path-scale thermal history with experimentally acquired melt pool images. Comparing the simulation results and the experimental data, we discuss the influence of laser power on the melt pool length on the path-scale level. We also identify the possible ways to further improve the accuracy of the CAPL simulation without sacrificing efficiency.
翻译:暂无翻译