In many areas of science and engineering, computer simulations are widely used as proxies for physical experiments, which can be infeasible or unethical. Such simulations can often be computationally expensive, and an emulator can be trained to efficiently predict the desired response surface. A widely-used emulator is the Gaussian process (GP), which provides a flexible framework for efficient prediction and uncertainty quantification. Standard GPs, however, do not capture structured sparsity on the underlying response surface, which is present in many applications, particularly in the physical sciences. We thus propose a new hierarchical shrinkage GP (HierGP), which incorporates such structure via cumulative shrinkage priors within a GP framework. We show that the HierGP implicitly embeds the well-known principles of effect sparsity, heredity and hierarchy for analysis of experiments, which allows our model to identify structured sparse features from the response surface with limited data. We propose efficient posterior sampling algorithms for model training and prediction, and prove desirable consistency properties for the HierGP. Finally, we demonstrate the improved performance of HierGP over existing models, in a suite of numerical experiments and an application to dynamical system recovery.
翻译:在许多科学和工程领域,计算机模拟被广泛用作物理实验的代理物,而物理实验可能是不可行或不道德的,这种模拟往往在计算上费用昂贵,模拟器可以接受有效预测所需反应表面的培训。一个广泛使用的模拟器是高森过程(GP),它为有效预测和确定不确定性提供了灵活的框架。标准GP没有捕捉许多应用中存在的、特别是物理科学应用中存在的基本反应表面结构性散变。因此,我们提议一种新的等级缩缩缩GP(HierGP),通过累积缩缩缩前将这种结构纳入GP框架内。我们表明,HierGP隐含了众所周知的效果宽度、遗传性和分析等级等原则,使我们的模型能够用有限的数据从反应表面找出结构上分散的特征。我们提出用于模型培训和预测的高效的远地点取样算法,并证明HierGP具有理想的一致性特性。最后,我们展示了HierGP相对于现有模型的改进性能,在数字和动态应用中,在数字和数字回收的套件中。