Motivated by the need of estimating the pose (viewpoint) of arbitrary objects in the wild, which is only covered by scarce and small datasets, we consider the challenging problem of class-agnostic 3D object pose estimation, with no 3D shape knowledge. The idea is to leverage features learned on seen classes to estimate the pose for classes that are unseen, yet that share similar geometries and canonical frames with seen classes. For this, we train a direct pose estimator in a class-agnostic way by sharing weights across all object classes, and we introduce a contrastive learning method that has three main ingredients: (i) the use of pre-trained, self-supervised, contrast-based features; (ii) pose-aware data augmentations; (iii) a pose-aware contrastive loss. We experimented on Pascal3D+ and ObjectNet3D, as well as Pix3D in a cross-dataset fashion, with both seen and unseen classes. We report state-of-the-art results, including against methods that use additional shape information, and also when we use detected bounding boxes.


翻译:由于需要估计野生任意物体的姿势(景点),而野生任意物体的姿势(景点)只是由稀少和小的数据集所覆盖,因此,我们考虑到类知性三维天体的估算具有挑战性,没有3D形状知识,其想法是利用在可见类中学习到的特征来估计隐形类的姿势,但具有相似的地貌和与被见类相近的金字框。为此,我们通过在所有对象类别中分享重量,以类知性方式培训一个直接的姿势定点。我们采用了一种对比性学习方法,它有三个主要成份:(一) 使用预先训练的、自我监督的、以对比为基础的特征;(二) 面识性数据增强;(三) 面识性反差损失。我们在Pscal3D+ 和对象Net3D 以及 Pix3D 以交叉数据集方式进行实验,既有可见的,也有看不见的。我们报告最新的结果,包括针对使用其他形状信息的方法,还有在我们探测的封闭箱时。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
31+阅读 · 2020年9月21日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员