We study the problem of the identification of m arms with largest means under a fixed error rate $\delta$ (fixed-confidence Top-m identification), for misspecified linear bandit models. This problem is motivated by practical applications, especially in medicine and recommendation systems, where linear models are popular due to their simplicity and the existence of efficient algorithms, but in which data inevitably deviates from linearity. In this work, we first derive a tractable lower bound on the sample complexity of any $\delta$-correct algorithm for the general Top-m identification problem. We show that knowing the scale of the deviation from linearity is necessary to exploit the structure of the problem. We then describe the first algorithm for this setting, which is both practical and adapts to the amount of misspecification. We derive an upper bound to its sample complexity which confirms this adaptivity and that matches the lower bound when $\delta$ $\rightarrow$ 0. Finally, we evaluate our algorithm on both synthetic and real-world data, showing competitive performance with respect to existing baselines.
翻译:我们研究了在固定误差率$delta$(固定信心顶部识别)下用最大手段识别线性土匪模型的问题。 这个问题的起因是实际应用, 特别是在医学和建议系统中, 线性模型因其简单和有效算法的存在而很受欢迎, 但其中数据不可避免地偏离了线性。 在这项工作中, 我们首先从一般顶部识别问题的样本复杂性中得出一个可移动的较低约束值。 我们显示, 要利用问题的结构, 需要了解线性偏离的尺度。 我们然后描述这一设置的第一种算法, 这个算法既实用,又适应了误差的程度。 我们从中得出一个顶部的样本复杂性, 证实了这种适应性, 当 $delta$ $\rightrower 0. 时, 与较低约束值相符。 最后, 我们从合成和真实世界数据上评价我们的算法, 显示现有基线的竞争性性。